next up previous
Next: DRIF Up: Element Dictionary Previous: CSRDRIFT

CWIGGLER

Tracks through a wiggler using canonical integration routines of Y. Wu (Duke University).
Parallel capable? : yes
Parameter Name Units Type Default Description
L $M$ double 0.0 Total length
BMAX   double 0.0 Maximum magnetic field.
DX   double 0.0 Misaligment.
DY   double 0.0 Misaligment.
DZ   double 0.0 Misaligment.
TILT   double 0.0 Rotation about beam axis.
PERIODS   long 0 Number of wiggler periods.
STEPS_PER_PERIOD   long 10 Integration steps per period.
INTEGRATION_ORDER   long 4 Integration order (2 or 4).
BY_FILE   STRING NULL Name of SDDS file with By harmonic data.
BX_FILE   STRING NULL Name of SDDS file with Bx harmonic data.





This element simulates a wiggler or undulator using Ying Wu's canonical integration code for wigglers. To use the element, one must supply an SDDS file giving harmonic analysis of the wiggler field. The field expansion used by the code for a horizontally-deflecting wiggler is (Y. Wu, Duke University, private communication).

\begin{displaymath}
B_y = -\left\vert B_0\right\vert \sum_{m,n} C_{mn}\cos(k_{xl} x) \cosh (k_{ym} y)
\cos(k_{zn} z + \theta_{zn}),
\end{displaymath} (3)

where $\left\vert B_0\right\vert$ is the peak value of the on-axis magnetic field, the $C_{mn}$ give the relative amplitudes of the harmonics, the wavenumbers statisfy $k^2_{ym} = k^2_{xl} + k^2_{zn}$, and $\theta_{zn}$ is the phase.

The file must contain the following columns:

For matrix and radiation integral computations, elegant uses a WIGGLER element when it encounters a CWIGGLER. The effective bending radius is $B\rho/B_0/\sqrt{\sum C_{mn}^2}$ (L. Emery, private communication). Tests show that this gives good agreement in the tunes from tracking and Twiss parameter calculations.


next up previous
Next: DRIF Up: Element Dictionary Previous: CSRDRIFT
Robert Soliday 2007-04-02