
User’s Guide for spiffe Version 4.8

Michael Borland

Advanced Photon Source

June 8, 2017

1 Introduction

This manual describes use of the program spiffe (SPace charge and Integration of Forces For
Electrons). Those wishing to understand the algorithms used by spiffe should consult reference
[2].

2 Changes

2.1 Version 4.8.0

1. The define_field_sampling command now uses the field interpolation routine to sample
electric and magnetic fields, rather than simply taking fields from the problem grid. This
means that all field components are included: (1) fields generated by antennae, (2) fields
generated by the beam, (3) fields obtained from off-axis expansion, (3) fields obtained from
electrostatic poentials, and (5) constant imposed fields. Previously, only 1 and 2 were repre-
sented in the output. The need for this was pointed out by P. Piot (NIU).

2. The define_field_sampling command now accepts “Ball” and “Eall” as field requests,
meaning that all components of ~E or ~B are sampled.

2.2 Version 4.7.1

1. Added the define_emitter command, which allows specifying emission from any surface.
This was requested by J. Edelen (FNAL).

2. Fixed a bug in field interpolation near left-facing surfaces. This would affect secondary
emission from such surfaces.

3. Fixed a bug in secondary emission routines due to an uninitialized pointer.

2.3 Version 4.6

1. When using load_particles to load simulation particles from a file, in the past the particles
had to enter through one of the three planes z = zmin, z = zmax, or r = rmax. If a
metal boundary existed just inside the plane, particles would simply be eliminated. It is
now possible for particles to enter through the metal boundary on the left-hand side of the
simulation region. This feature was added following a request from J. Edelen (FNAL).

1



2. The beam snapshot (from define_snapshots) now includes a status column that indicates
whether particles are active.

3 Run Organization

A typical spiffe run consists of the following steps, most of which are optional. Although the
steps need not be executed exactly in the order shown here, doing so will prevent the occasional
error message. Each step is performed by invoking a namelist command, as indicated:

1. Define the simulation region and the geometry of a cavity. This includes defining the grid
sizes, the boundary conditions, which types of fields to include (TE or TM), and how to
interpolate on the grid. This is done with the define geometry command, which requires
existence of a boundary definition file in a POISSON-like format. This file specifies not only
the location of the metal surfaces in the problem, but optionally the potential of each.

2. Optional: define the time-dependent fields and/or a method of generating fields. This is
done with the load fields, define antenna, and/or add on axis fields commands. The
former allows loading fields from a previous spiffe run, whereas the latter allows generating
new fields using a modulated sine-wave current source.

3. Optional: define solenoid coils, from which static magnetic fields will be computed and im-
posed on the particle motion. The define solenoid command permits defining a solenoid
with a specified length, radius, symmetry, and current/field.

4. Optional: define constant field components to be imposed on the simulation. These field
components, defined with the constant fields command, are not necessarily physical in
that they may not satisfy Maxwell’s equations.

5. Optional: load a particle distribution and/or define a cathode for generation of particles. The
former is not presently implemented in version 2.0 of spiffe. The define cathode namelist
permits specification of the size, current density, time profile, and other parameters of particle
emission from an annulus. Starting in version 2.3, multiple cathodes may be defined.

6. Optional: invoke and control Poisson correction. This is controlled by the
poisson correction command. It is recommended in order to increase the accuracy of
the field solutions. Without it, numerical errors tend to build up that correspond to fictitious
concentrations of static charge on the grid.

7. Optional: define resistive elements in the cavity interior, which simulates the effect of walls
that are less than perfectly conducting. This is done with one or more define resistor

commands. It slows the simulation tremendously, due to the reduced step size needed to
obtain numerical stability.

8. Optional: define a series of diagnostic “screens” for placement in the beam path. A single
define screen command can be used to produce output of beam parameters at a series of
equispaced longitudinal positions.

9. Optional: request beam snapshots at equispaced time intervals. This is done with the
define snapshots command.

2



10. Optional: request field output and/or field saving. Field output is in a format convenient
for plotting and analysis, in that values are interpolated onto the same grid for all field
components. Field saves are intended for use by a subsequent spiffe run. These operations
are set up by the define field output and define field saving commands.

11. Optional: request sampling of the fields vs time or space coordinates. With the command
define field sampling, one may set up sampling of a specific field component along a line
in z or r, with output vs the distance along the line at specified times or else output of the
average value along the line vs time.

12. Optional: request reduction and translation of the simulation grid so that it moves along with
the particles.

13. Optional: request simulation of secondary emission, using the define secondary emission

command. This won’t result in generation of any secondary particles unless a cathode is
defined or particles are loaded from a file.

14. Define integration parameters and begin integration. The integrate command allows speci-
fying the integration time step, the total time to integrate, and other conditions of integration.
(Strictly speaking, it is optional, but only if you don’t want to do anything.)

4 Manual Pages

The main input file for a spiffe run consists of a series of namelists, which function as commands.
Most of the namelists direct spiffe to set up to run in a certain way. A few are “action” commands
that begin the actual simulation. FORTRAN programmers should note that, unlike FORTRAN
namelists, these namelists need not come in a predefined order; spiffe is able to detect which
namelist is next in the file and process appropriately.

Each namelist has a number of variables associated with it, which are used to control details of
the run. These variables come in three data types: (1) long, for the C long integer type, (2) double,
for the C double-precision floating point type, and (3) STRING, for a character string enclosed in
double quotation marks. All variables have default values, which are listed on the following pages.
STRING variables often have a default value listed as NULL, which means no data; this is quite
different from the value “”, which is a zero-length character string. long variables are often used
as logical flags, with a zero value indicating false and a non-zero value indicating true.

On the following pages the reader will find individual descriptions of each of the namelist
commands and their variables. Each description contains a sequence of the form

&<namelist-name>

<variable-type> <variable-name> = <default-value>;

.

.

.

&end

This summarizes the parameters of the namelist. Note, however, that the namelists are invoked in
the form

&<namelist-name>

[<variable-name> = <value> ,]

3



[<array-name>[<index>] = <value> [,<value> ...] ,]

.

.

.

&end

The square-brackets enclose an optional component. Not all namelists require variables to be given–
the defaults may be sufficient. However, if a variable name is given, it must have a value. Values
for STRING variables must be enclosed in double quotation marks. Values for double variables may
be in floating-point, exponential, or integer format (exponential format uses the ‘e’ character to
introduce the exponent).

4



4.1 define geometry

• description: Define the simulation region and the geometry of a cavity. This includes
defining the grid sizes, the boundary conditions, which types of fields to include (TE or TM),
and how to interpolate on the grid. This is done with the define geometry command, which
requires existence of a boundary definition file in a POISSON-like format. This file specifies
not only the location of the metal surfaces in the problem, but optionally the potential of
each.

• example:

&define_geometry

nz = 165, zmin = 0.0, zmax = 0.0959148653920,

nr = 165, rmax=0.04289777777,

boundary = "mg6mm-3.geo",

boundary_output = "mg6mm-3.bnd",

interior_points = "mg6mm-3.pts"

&end

This command defines a problem with an extent of about 9.6cm in the longitudinal direction
and about 4.3cm in the radial direction. The number of grid lines in each dimension is
165. Boundary input is taken from file mg6mm-3.geo. In addition, output of the boundary
coordinates is to be placed in file mg6mm-3.bnd while output of the coordinates of all interior
grid points is to be placed in mg6mm-3.pts.

• synopsis and defaults:

&define_geometry

long nz = 0;

long nr = 0;

double zmin = 0;

double zmax = 0;

double rmax = 0;

double zr_factor = 1;

STRING rootname = NULL;

STRING boundary = NULL;

STRING boundary_output = NULL;

STRING urmel_boundary_output = NULL;

STRING discrete_boundary_output = NULL;

STRING interior_points = NULL;

STRING lower = "Dirichlet";

STRING upper = "Neumann";

STRING right = "Neumann";

STRING left = "Neumann";

long include_TE_fields = 0;

long exclude_TM_fields = 0;

long turn_off_Er = 0;

long turn_off_Ez = 0;

long turn_off_Ephi = 0;

5



long turn_off_Br = 0;

long turn_off_Bz = 0;

long turn_off_Bphi = 0;

long print_grids = 0;

long radial_interpolation = 1;

long longitudinal_interpolation = 1;

long radial_smearing = 0;

long longitudinal_smearing = 0;

&end

• details:

– nz, nr: number of grid lines in z and r dimensions, respectively.

– zmin, zmax: starting and ending longitudinal coordinate, respectively.

– rmax: maximum radial coordinate.

– zr factor: a factor by which to multiply the z and r values in the boundary input file
to convert the values to meters. For example, zr factor=0.01 would be used if the
boundary input file values were in centimeters.

– rootname: rootname for construction of output filenames. Defaults to the rootname of
the input file.

– boundary: name of input file containing POISSON-like specification of the cavity bound-
ary and surface potentials.

– boundary output: (incomplete) name of output file to which SDDS-protocol data will
be sent containing the coordinates of points on the ideal boundary, i.e., the boundary
you would get if your grid spacing was zero. Recommended value: “

– discrete boundary output: (incomplete) name of output file to which SDDS-protocol
data will be sent containing the coordinates of points on the actual boundary used in
the simulation. This differs from the ideal boundary because every point on the actual
boundary must be a grid point. Recommended value: “

– interior points: (incomplete) name of output file to which SDDS-protocol data will be
sent containing the coordinates of all interior points of the cavity. May be used together
with boundary output files and sddsplot to manually confirm the interpretation of the
cavity specification by spiffe.

– lower, upper, right, left: boundary conditions for the edges of the simulation re-
gion. The defaults are listed above. “Dirichlet” boundary conditions means that electric
field lines are parallel to the boundary. “Neumann” boundary conditions means that
electric field lines are perpendicular to the boundary.

– include TE fields: flag indicating whether to include transverse-electric fields, i.e.,
fields having no longitudinal electric field components. If you include space-charge and
the beam is rotating, you should set this to 1.

– exclude TM fields: flag indicating whether to exclude transverse-magnetic fields, i.e.,
fields having no longitudinal magnetic field components.

– turn off ...: flags indicating that the specified fields should be “turned off,” which
means that the don’t affect particles. Used for testing purposes.

– print grids: flag requesting a text-based picture of the simulation grids.

6



– radial interpolation, longitudinal interpolation: flags requesting that field
components be interpolated in the radial and longitudinal direction when fields are
applied to particles. If 0, then fields will change abruptly as particles move from one
grid square to the next.

– radial smearing, longitudinal smearing: flags requesting that charge and current
from simulation macro particles be smeared over the grid points surrounding each par-
ticle. If 0, charge and current are assigned to the nearest grid point.

7



4.2 Geometry File

• description: This page describes the structure of the geometry file used with the
define geometry namelist. The file is similar to those used with the program POISSON.

• example:

! new RF gun, first cell

&po x=0.000, y=0.000 &end

&po x=0.000, y=0.006 &end

&po x=0.0016, y=0.0135 &end

&po x=0.0016, y=0.0427755 &end

&po x=0.0060, y=0.0427755 &end

&po nt=2, x0=0.006, y0=0.0181355,

r=0.02464, theta=0.0 &end

&po x=0.03064 , y=0.014818 &end

&po nt=2, x0=0.02861, y0=0.014818,

r=0.00203, theta=-90.0 &end

&po x=0.02836, y=0.012788 &end

&po nt=2, x0=0.02836, y0=0.010588,

r=0.0022, theta=180.0 &end

&po x=0.02616, y=0.01008 &end

&po nt=2, x0=0.03116, y0=0.01008,

r=0.005, theta=270.0 &end

&po x=0.0348, y=0.00508 &end

&po x=0.0348, y=0.00 &end

&po x=0.000000, y=0.00 &end

• synopsis and defaults:

&point

int nt = 1;

double x = 0;

double y = 0;

double x0 = 0;

double y0 = 0;

double r = 0;

double a = 0;

double b = 0;

double aovrb = 0;

double theta = 0;

int change_direction = 0;

double potential = 0;

int ramp_potential = 0;

int material_id = 0;

&end

• details:

8



– nt: The segment type, where 1 (the default) indicates a line segment; 2 indicates an arc
of a circle; 3 indicates the start of a separate structure; and 4 indicates a definition of
an in-vacuum point.

– x, y: For nt=1, the endpoint of the line. x corresponds to z (the longitudinal coordinate)
and y corresponds to r (the radial coordinate). For nt=2, the endpoint of the circular or
elliptical arc relative to (x0, y0). For nt=3, the first point on the new shape. For nt=4,
the coordinates of the in-vacuum point.

– x0, y0: For nt=2, the center of the circular or elliptical arc.

– r: For nt=2, the radius of the circular arc. The equation of the arc is (x−x0)
2+(y−y0)

2 =
r2.

– a, b, aovrb: For nt=2, the parameters of the elliptical arc. The equation of the arc is
(x− x0)

2/a2 + (y− y0)
2/b2 = 1. If a or b is zero, then the value is determined using the

ratio aovrb (a over b).

– theta: For nt=2, the angle in degrees of the end of the arc as seen from the center of
the arc. If this angle is less (greater) than the angle of the starting point (which is on
[−180, 180]), then the sense of the arc is clockwise (counter-clockwise).

– change direction: For nt=2 when theta is not given but x and y are, spiffe may
have trouble determining the direction of the arc. This flag can be used to change the
direction.

– potential: The potential of the segment, in volts.

– ramp potential: If non-zero, the potential along a line is ramped linearly between the
given value and the end value for the previous segment. Only implemented for nt=1.

– material_id: a positive integer that identifies the material of which this seg-
ment is made. Used to associate segments of the geometry with primary emission
(define_emitter) and secondardy emission (define_secondary_emission).

9



4.3 define antenna

• description: Allows generating time-varying fields using a modulated sine-wave current
source.

• example:

&define_antenna

start = 0.01, end = 0.02, position = 0.03,

direction = "z",

current = 1,

frequency = 2856e6,

waveform = "spline.wf"

&end

This defines a current source in the longitudinal direction extending from z of 1cm to 2cm at
a radius of 3cm. The amplitude of the current is 1A with a frequency of 2856MHz, modulated
by the envelope in SDDS file spline.wf.

• synopsis and defaults:

&define_antenna

double start = 0;

double end = 0;

double position = 0;

STRING direction = "z";

double current = 0;

double frequency = 0;

double phase = 0;

STRING waveform = NULL;

double time_offset = 0;

&end

• details:

– direction: may take values ”z” and ”r”, indicating an antenna extending in the longi-
tudinal or radial direction, respectively.

– start, end: starting and ending limits of the antenna in the direction direction.

– position: position of the antenna in the ”other” direction. I.e., it is the r position if
direction is ”z”, and the z position if direction is ”r”.

– current, frequency, phase: basic parameters of the antenna waveform.

– waveform, time offset: specifies an envelope function for the antenna drive. The
SDDS file waveformmust contain at least two columns, named t (for the time in seconds)
and W, specifying the envelope W(t). The antenna is driven by the function I ∗W (t −
to) ∗ sin(2 ∗ π ∗ f + φ), where I is the current in Amperes, t is the time in seconds, to
is time offset in seconds, f is frequency in Hertz, and φ is phase in radians.

10



4.4 load fields

• description:

Allows loading fields from a previous spiffe run. The fields are stored in a file created with
the save fields command.

• example:

&load_fields

filename = "fields.saved",

factor = 1.5;

&end

This loads fields from the file fields.saved, applying a factor of 1.5 to the values. These
fields become the only time-varying fields in the problem. (Others may be superimposed in
subsequent operations.)

• synopsis and defaults:

#namelist load_fields

STRING filename = NULL;

double Ez_peak = 0;

double factor = 1;

double time_threshold = 0;

long overlay = 0;

#end

• details:

– filename: Name of the file from which to take field data. Normally created with
the save fields command. The file is in SDDS-protocol, typically with multiple data
pages. Normally, the first page is used. This may be modified with the time threshold

parameter.

– Ez peak: Desired maximum value of on-axis longitudinal electric field. The fields from
the data file are scaled to obtain this value. Note that this option cannot be used if TM
fields are disabled. By default, no scaling occurs.

– factor: Factor by which to multiply the fields before use. If Ez peak is 0, then this
value is ignored. One of factor or Ez peak must be nonzero.

– time threshold: Minimum simulation time, in seconds, at which the fields may have
been created in order to be used. For example, if time threshold is 1e-9, then spiffe

will advance through the pages of fields until it finds one from 1ps or more (in simulation
time) after the start of the simulation that created the file filename.

– overlay: Normally, the time-varying fields in the simulation are set equal to those in
the file, within a scale factor. If you wish to simply add the new fields to those already
in force, then set overlay to a nonzero value.

11



4.5 set constant fields

• description: Defines constant field components to be imposed on the simulation. These field
components are not necessarily physical in that they may not satisfy Maxwell’s equations.

• example:

&set_constant_fields

Ez = 1e3,

Bz = 1,

&end

This command specifies a constant longitudinal electric field of 1 kV/m and a constant longi-
tudinal magnetic field of 1 T. Note that these are physically possible, at least in the absence
of metallic or magnetic materials.

• synopsis and defaults:

&constant_fields

double Ez = 0;

double Er = 0;

double Ephi = 0;

double Bz = 0;

double Br = 0;

double Bphi = 0;

&end

• details:

– Ez: Specifies longitudinal electric field in V/m.

– Er: Specifies radial electric field in V/m.

– Ephi: Specifies azimuthal electric field in V/m.

– Bz: Specifies longitudinal magnetic field in T.

– Br: Specifies radial magnetic field in T.

– Bphi: Specifies azimuthal magnetic field in T.

12



4.6 add on axis fields

• description:

Adds on-axis field data to the simulation. The user must provide an SDDS file giving Ez(z, r =
0). This data is used to compute Ez(z, r, t), Er(z, r, t), and Bφ(z, r, t) using an off-axis
expansion in r and assuming E ∼ sin(ωt+ φ) and B ∼ cos(ωt+ φ).

Any number of add_on_axis_fields commands may be given.

• example:

&add_on_axis_fields

filename = fieldProfile.sdds,

z_name = z,

Ez_name = Ez,

Ez_peak = 30e6,

phase = 180,

expansion_order = 2

fields_used = fieldUsed.sdds,

&end

This command loads on-axis field data from columns z and Ez in fieldProfile.sdds, and
scales it so that the peak field is 30 MV/m. The phase, φ, is set to 180 degrees. Because
spiffe simulates electrons, if E(z, r) is positive, the phase factor must be negative to provide
acceleration. I.e., φ = 270◦ is the accelerating phase.

• synopsis and defaults:

#namelist add_on_axis_fields

STRING filename = NULL;

STRING z_name = NULL;

STRING Ez_name = NULL;

double Ez_peak = 0;

double frequency = 0;

double z_offset = 0;

long expansion_order = 3;

STRING fields_used = NULL;

#end

• details:

– filename: Name of the SDDS file containing the data.

– z name: Name of the column containing z values, which must be monotonically increasing
and equispaced.

– Ez name: Name of the column containing Ez values.

– Ez peak: Absolute value, in V/m, of the maximum on-axis electric field due to this field
profile. The Ez values are scaled to obtain this maximum, but the signs are unchanged.

– frequency: Frequency of the fields, in Hz.

– z offset: Offset, in meters, to be added to the z values.

13



– expansion order: Order of the off-axis expansion:

0 Ez is constant in r, while Er and Bφ are zero.

1 Ez is constant in r, while Er and Bφ vary linearly with r.

2 Adds a quadratic variation with r to Ez .

3 Adds a cubic variation with r to Er and Bφ.

– fields used: Name of an SDDS file to which field profile data will be written for all
on-axis fields specified up to and including this command.

14



4.7 define solenoid

• description: Define solenoid coils, from which static magnetic fields will be computed and
imposed on the particle motion. The define solenoid command permits defining a solenoid
with a specified length, radius, symmetry, and current/field.

• example:

&define_solenoid

radius = 0.05,

z_start = 0.01, z_end = 0.02,

current = 1,

Bz_peak = 1,

turns = 100

&end

This command defines a 100-turn solenoid extending longitudinally between coordinates 1cm
and 2cm, at a radius of 5cm. The current, initial 1A, is adjusted to obtain a peak on-axis
longitudinal B field of 1Tesla.

• synopsis and defaults:

#namelist define_solenoid

double radius = 0;

double evaluation_radius_limit = 0;

double z_start = 0;

double z_end = 0;

double current = 0;

double Bz_peak = 0;

long turns = 1;

long symmetry = 0;

STRING field_output = NULL;

long bucking = 0;

double z_buck = 0;

#end

• details:

– radius: The radius of the coils in meters.

– evaluation radius limit: The maximum radius in meters at which the solenoidal
fields should be computed. This can save considerable CPU time if you are not interested
in particles that go beyond a certain radius (e.g., you know they’ll be lost).

– z start, z end: The starting and ending longitudinal coordinate of the coils, in meters.

– current: The current in each coil in Amperes (not Ampere-turns).

– Bz peak: The peak on-axis longitudinal magnetic field in Tesla desired from this solenoid.
The current is scaled to achieve this value. Even if you give this value, you must give
an initial value for current.

– turns: The number of turns (or coils) in the solenoid.

15



– symmetry: Either 0, 1, or -1 for no symmetry, even symmetry, or odd symmetry. For
codes of ±1, the resulting fields are those produced by the combination of the specified
solenoid and another identical solenoid extending from -z start to -z end. If symmetry
is 1 (-1), the field from the mirror solenoid adds to (subtracts from) the field due to the
specified solenoid.

– field output: Requests output of the solenoid field to an SDDS file. This output is
accumulated field from all solenoids defined up to this point, including the solenoid
presently being defined.

– bucking: If nonzero, indicates that this is a bucking solenoid. The solenoid current is
adjusted to zero the on-axis value of Bz at z buck.

– z buck: If bucking is nonzero, the location at which the field is bucked.

Here is an example of using three define solenoid commands to make a solenoid field with a
peak on-axis Bz value of 0.3T that is bucked to zero at z = 0. The main solenoid field is produced
by two sets of windings with a ratio of 10:1 between the current:

&define_solenoid

radius = 0.06,

evaluation_radius_limit = 0.1,

z_start = 0.0,

z_end = 0.15,

current = 1,

turns = 100,

&end

&define_solenoid

radius = 0.06,

evaluation_radius_limit = 0.1,

z_start = 0.20,

z_end = 0.30,

current = 0.1,

turns = 67,

&end

&define_solenoid

radius = 0.02,

evaluation_radius_limit = 0.1,

z_start = -0.04,

z_end = -0.02,

current = 1, ! any nonzero value will do

turns = 100,

bucking = 1,

Bz_peak = 0.3,

field_output = solenoid.sdds

&end

16



4.8 define cathode

• description: Permits specification of the size, current density, time profile, and other pa-
rameters of particle emission from an annulus. Starting in version 2.3, multiple cathodes may
be defined.

• example:

&define_cathode

z_position = 0, outer_radius = 0.003,

current_density = 20e4,

start_time = 0, stop_time = 200e-12,

number_per_step = 8,

&end

• synopsis and defaults:

&define_cathode

double z_position = 0;

double inner_radius = 0;

double outer_radius = 0;

double current_density = 0;

double temperature = 0;

double work_function = 0;

long field_emission = 0;

long add_thermal_velocities = 0;

double field_emission_beta = 1;

long determine_temperature = 0;

double electrons_per_macroparticle = 0;

double start_time = 0;

double stop_time = 0;

long autophase = 0;

double time_offset = 0;

double number_per_step = 0;

double initial_pz = 0;

double initial_omega = 0;

double stiffness = 1;

long discretize_radii = 0;

long random_number_seed = 987654321;

long distribution_correction_interval = 0;

long spread_over_dt = 0;

long zoned_emission = 1;

long halton_radix_dt = 0;

long halton_radix_r = 0;

STRING profile = NULL;

STRING profile_time_name = NULL;

STRING profile_factor_name = NULL;

STRING emission_log = NULL;

&end

17



• details:

– z position: Longitudinal position of the cathode in meters.

– inner radius, outer radius: Inner and outer radius of the edges of the cathode, in
meters.

– current density: Base current density, in Amperes/m2.

– temperature: Temperature of the cathode in degrees Kelvin. If zero, then emission
is constant at the rate given by current density. Otherwise, used together with the
work function (given by the work function parameter) and the Richardson-Schottky
emission model to determine emission at each time step based on the electric field.

– work function: Work function of the cathode material in eV. Must be nonzero if the
temperature is nonzero.

– determine temperature: If nonzero, then attempts to determine the temperature re-
quired to give the current density given by current density. You must give the
work function. Results are approximate because of the Richardson-Schottky law.

– add thermal velocities : If nonzero, thermal velocities are added at the time of emis-
sion, assuming a Maxwellian velocity distribution.

– field emission: If nonzero, then the cathode emits only by field emission. The treat-
ment of field emission is from section 6.13 of The Handbook of Accelerator Physics and

Engineering.. In field emission mode, spiffe splits the cathode into many subcathodes,
each one radial grid space in extent. The field emission current density is computed for
each subcathode separately, so that the results are correct in the case where the field
varies over the cathode.

– field emission beta: Gives the field enhancement factor for computing field emission
current density. The value of the electric field is multiplied by this factor before being
used to compute the field emission current density. Typical values are between 1 and
100. In this mode, you must specify electrons per macroparticle.

– electrons per macroparticle: Number of electrons represented by each macroparti-
cle.

– number per step: How many macroparticles to emit per step. Incompatible with spec-
ifying electrons per macroparticle.

– start time, stop time: Start and stop time for emission, in seconds.

– autophase: Flag requesting that cathode emission start only when the field at the
cathode has the proper phase to accelerate the beam. The total time for emission is still
determined by the difference between the start and stop time.

– time offset: Only relevant when autophase = 1. Specifies a time offset relative to the
emission start time determined by autophasing.

– initial pz: The initial longitudinal momentum of emitted particles, in dimensionless
units (i.e., normalized to mec).

– initial omega: The initial angular velocity of particles, in radians per second.

– stiffness: The beam stiffness, i.e., the particle mass, in electron masses.

– discretize radii: Flag requesting that particles be emitted only from radii n ∗ ∆r,
where n is an integer and ∆r is the radial grid spacing. This can be useful for certain
types of diagnostic runs, but should not be used with space charge.

18



– random number seed: The seed for the particle emission random number generator. A
large, odd integer is recommended. If 0 is given, the seed is picked based on the computer
clock.

– distribution correction interval: The number of steps between corrections to the
emitted particle distribution. Can be used to compensate for nonuniform emission that
occurs due to use of random numbers in the emission algorithm. If used, it should be set
to 1. Cannot be used when the temperature is nonzero (Richardson-Schottky emission
law).

– spread over dt: Flag requesting that emitted particles have their effective emission
times spread out over the simulation time step, ∆t. The particle velocities are adjusted
appropriately using the instantaneous Ez and Er fields only.

– zoned emission: Flag requesting that emission calculations take place separately for
each annular zone of width ∆r (the radial grid spacing). Reduces the possibility that
random number effects will result in a nonuniform current density.

– halton radix t: Halton radix (a small prime number) to be used for quiet-start gener-
ation of time values.

– halton radix r: Halton radix (a small prime number) to be used for quiet-start gener-
ation of radius values.

– profile: The name of an SDDS-protocol file containing a time-profile with which to
modulate the base current density.

– profile factor name, profile time name: The columns giving the current-density
adjustment factor and the corresponding time when it is valid for the file named by
profile. The adjustment factor should be on [0, 1].

– emission log: The name of an SDDS-protocol file to which data will be written for
each emitted particle.

19



4.9 load particles

• description:

Allows loading particles from an SDDS file. This is an alternative to using a cathode and can
provide essentially arbitrary particle distributions. Since spiffe is a 2.5 dimensional code,
the “particles” are really rings at a given radius and longitudinal position.

Note that particles can be injected into the simulation region if they start with z or r coordi-
nates outside of z : [zmin, zmax] or r : [0, rmax]. In this case, the particles drift ballistically
until they enter the problem region. As a special case, particles entering from the left-hand
side of the problem region are not active until they emerge from any metal surface that abuts
z = zmin.

• example:

&load_particles

filename = "particles.sdds",

&end

This loads particles from the file particles.sdds.

• synopsis and defaults:

#namelist load_particles

STRING filename = NULL;

long sample_interval = 1;

double stiffness = 1;

#end

• details:

– filename: Name of the SDDS file from which to take particle data. The file must have
the following columns with the following units:

z : longitudinal position in meters.

r : radial poition in meters. If the particle position is initially outside the problem
region or inside a metal volume, it will move ballistically until it enters the problem
region or emerges from the metal.

pz : longitudinal momentum, βzγ.

pr : radial momentum, βrγ.

pphi : azimuthal momentum, βφγ.

q : charge, in Coulombs.

– sample interval: Causes spiffe to take only every sample intervalth particle from
the file.

– stiffness: Allows making the beam artificially stiff. Equivalent to increasing the par-
ticle mass by the given factor.

20



4.10 poission correction

• description: This command requests correction of the electric fields so that they satisfy
Poisson’s equation. It is recommended in order to increase the accuracy of the field solutions.
Without it, numerical errors tend to build up that correspond to fictitious concentrations of
static charge on the grid.

• example:

&poisson_correction

start_time = 1e-9,

step_interval = 32,

accuracy = 1e-4,

error_charge_threshold = 1e-15

&end

This requests that Poisson correction be performed every 32 simulation steps starting 1ns
after the start of the simulation. The fractional accuracy of the Poisson solver is 10−4. It is
invoked only when the amount of fictitious charge exceeds 0.001 pC.

• synopsis and defaults:

&poisson_correction

double start_time = 0;

long step_interval = 0;

double accuracy = 1e-6;

double error_charge_threshold = 0;

long maximum_iterations = 1000;

long verbosity = 0;

double test_charge = 0;

double z_test_charge = 0;

double r_test_charge = 0;

STRING guess_type = "none";

&end

• details:

– start time: Time in seconds at which to begin Poisson correction.

– step interval: Interval between corrections in units of the simulation step.

– accuracy: Fractional accuracy of the Poisson solutions.

– error charge threshold: Amount of net error charge that must be present for Poisson
correction to actually take place.

– maximum iterations: Maximum number of iterations of the relaxation loop for the
Poisson solver.

– verbosity: Flag requesting informational output about Poisson correction.

– test charge, z test charge, r test charge: For developmental use only.

– guess type: The model to use for the initial guess to start the Poisson iteration. Possi-
bilities are, “none”, “line-charge”, “point-charge”, and “zero.” It is recommended that
“none” be used.

21



4.11 translate

• description: Sets up repeated translation of the memory used for the mesh in the +z
direction to follow the beam. This can be used to simulate a long drift while using less
computing time and less memory. There has been little testing of this feature!

• example:

&translate

z_trigger = 0.05,

z_lower = 0.02,

z_upper = 0.055

&end

This specifies that when the first particle passes z = 5cm, the mesh will be contracted to cover
the region from z = 2cm to z = 5.5cm. Thereafter, each time a particle advances by one
longitudinal mesh spacing, the grid will be translated that same distance in the +z direction.

The boundary conditions are changed to Neumann on the upper, right, and left boundaries
and Dirichlet on the lower boundary.

• synopsis and defaults:

&translate

z_lower = <zMin>,

z_upper = <zMax>,

z_trigger = <z0>,

&end

where <zMin> and <zMax> are the minimum and maximum longitudinal coordinates for the
original problem mesh, and <z0> is <zMax>-5 ∗∆z, where ∆z is the mesh spacing.

• details:

– z trigger: The first time any particle passes the longitudinal position given for this
variable, mesh reduction is triggered and translation is enabled. Prior to this time, the
translate command has no effect. After this time, translation by ∆z occurs every time
the maximum longitudinal particle position increases by ∆z.

– z lower: The lower limit of the longitudinal extent of the reduced mesh.

– z upper: The upper limit of the longitudinal extent of the reduced mesh.

22



4.12 define resistor

• description: Defines a resistive element in the cavity interior. These simulate the effect of
walls that are less than perfectly conducting. It slows the simulation tremendously, due to
the reduced step size needed to obtain numerical stability.

• example:

&define_resistor

start = 0.02, end = 0.03,

position = 0.04,

direction = "z",

conductivity = 6e3

&end

This specifies a resistor extending in the longitudinal (z) direction from 2cm to 3cm, at a
radius of 4cm. The conductivity is 6 ∗ 103(m ∗ ohms)−1, the value for copper.

• synopsis and defaults:

&define_resistor

double start = 0;

double end = 0;

double position = 0;

STRING direction = "z";

double conductivity = 1e154;

&end

• details:

– direction: The direction in which the resistor extends. May be “z” or “r”.

– start, end: The starting and ending coordinates of the resistor in the direction

dimension.

– position: The position of the resistor in the “other” dimension. E.g., the radial position
if direction is “z”.

– conductivity: The conductivity of the metal in (m ∗ ohms)−1.

23



4.13 define screen

• description: Defines a series of diagnostic “screens” for placement in the beam path. A
single define screen command can be used to produce output of beam parameters at a
series of equispaced longitudinal positions.

• example:

&define_screen

template = "gunRun-%03ld.sdds",

z_position = 0.01,

delta_z = 0.01,

number_of_screens = 5,

start_time = 1e-9,

direction = "forward"

&end

Defines a series of 5 screens for detection of forward-moving particles, The screens are posi-
tioned at z coordinates of 1, 2, 3, 4, and 5cm, with data going to files named gunRun-000.sdds,
gunRun-001.sdds, etc. Detection begins only after 1ns of simulated time.

• synopsis and defaults:

&define_screen

STRING filename = NULL;

STRING template = NULL;

double z_position = 0;

double delta_z = 0;

long number_of_screens = 1;

double start_time = 0;

STRING direction = "forward";

&end

• details:

– filename: Name of an SDDS file to which to write the data. Used only if
number of screens = 1.

– template: Template for creating the names of SDDS files to which to write data. The
template must contain a C-style format specifier for a long integer. The template is used
as an argument to the C function sprintf to create each filename in turn.

– z position: The position (or starting position) of the screen (or series of screens), in
meters.

– delta z: In number of screens is greater than 1, gives the distance in meters between
successive screens.

– number of screens: The number of screens in the series.

– start time: The starting time in seconds for accumulation of data.

– direction: The direction in which particles must be traveling in order to be recorded
by the screen. May be ”forward” or ”backward”.

24



4.14 define secondary emission

• description: Permits specification of secondary emission yield function for the material
surface. This refers to emission of one or more new particles when a particle impacts the
surface. By default, no secondary emission is done.

• example:

&define_secondary_emission

input_file = ‘‘secondary.sdds’’,

kinetic_energy_column = ‘‘K’’,

yield_column = ‘‘Yield’’

&end

• synopsis and defaults:

&namelist secondary_emission

STRING input_file = NULL;

STRING kinetic_energy_column = NULL;

STRING yield_column = NULL;

long yield_limit = 0;

double emitted_momentum = 0;

long verbosity = 1;

long material_id = 1;

STRING log_file = NULL;

&end

• details:

– input file — Name of an SDDS file from which the secondary emission yield curve will
be read.

– kinetic energy column — Name of the column in input file giving values of the
particle kinetic energy, in eV.

– yield column — Name of the column in input file giving values of the mean yield.
This is a ratio, giving the mean number of new electrons per incident electron.

– yield limit — If non-zero, this parameter limits from above the number of secondaries
that can be emitted per primary particle. It can be helpful in preventing runaway,
wherein the number of low-energy secondaries grows exponentially.

– emitted momentum — βγ value for newly-emitted particles. The orientation of the mo-
mentum is random.

– verbosity — Larger positive values result in more detailed printouts during the run.

– material id — A positive integer giving the material for which this command specifies
secondary emission properties. This will be used together with the material_id param-
eter of the point namelists in the geometry file to determine the appropriate secondary
emission properties for each segment of the cavity boundary.

– log file — A possibly incomplete name of an SDDS file to which secondary emission
records will be written.

25



The algorithm is a simple one suggested by J. Lewellen (APS). We assume that the secondary
emission yield is a function only of the incident particle’s kinetic energy. Each time a particle is
lost, the code determines where the particle intersected the metal boundary. The mean secondary
yield is computed from the kinetic energy at the time of loss. The number of secondary particles
emitted is chosen using a Poisson distribution with that mean. The secondary particles are placed
“slightly” (∆r/106 or ∆z/106) outside the metal surface.

To prevent runaway, the secondary yield curve should fall to zero for low energies. If you
have problems with runaway, try setting the yield limit parameter to a small positive integer.
Runaway appears to be associated (at times) with the occasional production of large numbers of
secondaries due to the tails of the Poisson distribution.

26



4.15 define snapshots

• description: Requests beam snapshots at equispaced time intervals. These snapshots con-
tain the spatial and momentum coordinates of all particles.

• example:

&define_snapshots

filename = "gunRun.snap",

time_interval = 0.1e-9

start_time = 2e-9

&end

This command results in snapshots being taken every 100ps starting at time 2ns, with data
going to gunRun.snap.

• synopsis and defaults:

&define_snapshots

STRING filename = NULL;

double time_interval = 0;

double start_time = 0;

&end

• details:

– filename: The name of an SDDS file to which to write the snapshots.

– time interval: The interval in seconds between successive snapshots.

– start time: The time in seconds at which to make the first snapshot.

27



4.16 define field output

• description: Requests output of the field map into an SDDS file. A separate SDDS data
page is made for successive maps. The interleaved simulation field grids are interpolated to
give all field values on the same grid.

• example:

&define_field_output

filename = "gunRun.fields",

time_interval = 0.1e-9,

start_time = 1e-9,

z_interval = 2,

r_interval = 2

&end

This command results in output of the fields on a grid that is twice as coarse as the simulation
grid in both z and r, starting at time 1ns and continuing at 100ps intervals thereafter. The
data is put in an SDDS file named gunRun.fields.

• synopsis and defaults:

&define_field_output

STRING filename = NULL;

double time_interval = 0;

double start_time = 0;

long z_interval = 1;

long r_interval = 1;

long exclude_imposed_field = 0;

long separate_imposed_field = 0;

&end

• details:

– filename: Name of an SDDS file in which to put the data.

– time interval: Simulated time interval in seconds between successive maps.

– start time: Starting simulated time for data output.

– z interval: Interval at which grid points are spaced longitudinally in units of the
simulation longitudinal grid size.

– r interval: Interval at which grid points are spaced radially in units of the simulation
radial grid size.

– exclude imposed field: Flag requesting that any fields specified with the
constant fields command should be excluded from the field output.

– separate imposed field: Flag requesting that any fields specified with the
constant fields command should be included in the output as separate data elements.

28



4.17 define field saving

• description: Field saving refers to writing the simulation fields to disk in such a way that
they can be reloaded in subsequent runs. At this time, it saves only the time-dependent field
components, not the external fields defined with define solenoid or constant fields.

• example:

&define_field_saving

filename = "gunRun.fsave",

time_interval = 1e-9,

double start_time = 5e-9

&end

This command results in saving of the fields at 1ns intervals starting at simulated time of 5ns
to file ”gunRun.fsave”. Successive saves are placed in successive SDDS pages.

• synopsis and defaults:

&define_field_saving

STRING filename = NULL;

double time_interval = 0;

double start_time = 0;

long save_before_exiting = 0;

&end

• details:

– filename: Name of an SDDS file to which to write the field saves.

– time interval: Simulated time interval in seconds between successive saves.

– start time: Simulated time at which to make the first save.

– save before exiting: Flag requesting that a save be made just prior to program ter-
mination.

29



4.18 define field sampling

• description: Requests sampling of the fields vs time or space coordinates. One may set up
sampling of a specific field component along a line in z or r, with output vs the distance along
the line at specified times or else output of the average value along the line vs time.

• example:

&define_field_sampling

filename = "gunRun.Ez_t,

component = "Ez",

time_sequence = 1

direction = "z",

min_coord = 0, max_coord = 0.01,

position = 0,

time_interval = 10e-12,

start_time = 0,

&end

Requests logging of Ez as a function of time, with samples made a 10ps simulated time
intervals starting with the start of the simulation. The data output is the average of Ez along
a line from z = 0 to z = 1cm.

• synopsis and defaults:

&define_field_sampling

STRING filename = NULL;

STRING component = NULL;

STRING direction = NULL;

double min_coord = 0;

double max_coord = 0;

double position = 0;

double time_interval = 0;

double start_time = 0;

long time_sequence = 0;

&end

• details:

– filename: Name of an SDDS file to which to write the data.

– component: Field component to sample. Must be one of ”Ez”, ”Er”, ”Jz”, ”Jr”, ”Bphi”,
”Phi”, ”Ephi”, ”Bz”, ”Br”, ”Q”, ”Eall”, or ”Ball”, E is the electric field, B is the
magnetic field, J is the current density, Phi is the scalar potential, and Q charge assigned
to a grid point. ”Eall” and ”Ball” request, respectively, all E- and B-field components.
As of version 4.8.0, the E- and B-field outputs are obtained using the same interpolation
routines as used for particle pushing, rather than merely taking the nearest grid points.

– direction: The direction of the line along which samples are taken. Must be ”z” or
”r”.

– min coord, max coord: The minimum and maximum coordinates of the sample line.

30



– position: The position of the sample line in the direction orthogonal to direction.

– time sequence: Flag requesting that instead of writing the selected component as a
function of the coordinate direction, spiffe instead write the average value of the
component along the sample line as a function of time. It zero, then spiffe creates a
new SDDS page for each sample time.

– start time: The simulated time in seconds at which to start sampling.

– time interval: The simulated time interval in seconds at which to make samples.

31



4.19 integrate

• description: Defines integration parameters and begins integration. Allows specifying the
integration time step, the total time to integrate, and other conditions of integration.

• example:

&integrate

dt_integration = 1e-12,

start_time = 0,

finish_time = 5e-9,

status_interval = 128,

space_charge = 1

&end

Starts integration of equations for particles and fields at a simulated time of 0, taking steps
of 1ps, until reaching 5ns. Every 128 steps, status information is printed to the screen. Space
charge is included.

• synopsis and defaults:

&integrate

double dt_integration = 0;

double start_time = 0;

double finish_time = 0;

long status_interval = -1;

long space_charge = 0;

long check_divergence = 0;

double smoothing_parameter = 0;

double J_filter_multiplier = 0;

long terminate_on_total_loss = 0;

STRING status_output = NULL;

STRING lost_particles = NULL;

&end

• details:

– dt integration: Simulation step size in seconds.

– start time: Simulation start time. Typically 0 for new runs. Ignored for runs that
involve fields loaded from other simulations.

– finish time: Simulation stop time.

– status interval: Interval in units of a simulation step between status printouts.

– space charge: Flag requesting inclusion of space-charge in the simulation.

– check divergence: Flag requesting that status printouts include a check of the field
values using the divergence equation.

– smoothing parameter: Specifies a simple spatial filter for the current density. The
smoothing parameter, s, is used to compute two new quantities, c1 = 1−s and c2 = s/2.
The program smooths longitudinal variation for constant radius, using Ao → (A− +
A+)c2 + Aoc1, where Ao is the central value and A± are the adjacent values to a grid
point. This function is rarely used and I do not recommend it.

32



– J filter multiplier: Specifies a simple time-domain filter for the current density. For
each point on the grid, the new current density value J(1) is replaced by J(1)∗ (1− f)+
J(0) ∗ f . This is an infinite impulse response filter. This function is rarely used and I
do not recommend it.

– terminate on total loss: Flag requesting that when all simulation particles are lost
(e.g., by hitting a wall or exiting the simulation), the simulation should terminate.

– status output: Provide the name of a file to which to write status information, includ-
ing statistics on the beams and fields. File is in SDDS format.

– lost particles: Provide the name of a file to which to write information about particles
that get lost. File is in SDDS format.

33



References

[1] H. G. Kirk et al. in Handbook of Accelerator Physics and Engineering, A. W. Chao and M.
Tigner eds., section 2.4.2.1, World Scientific, 1999, page 99.

[2] M. Borland, Summary of Equations and Methods Used in spiffe, APS/IN/LINAC/92-2, 29
June 1992.

34


	Introduction
	Changes
	Version 4.8.0
	Version 4.7.1
	Version 4.6

	Run Organization
	Manual Pages
	define_geometry
	Geometry File
	define_antenna
	load_fields
	set_constant_fields
	add_on_axis_fields
	define_solenoid
	define_cathode
	load_particles
	poission_correction
	translate
	define_resistor
	define_screen
	define_secondary_emission
	define_snapshots
	define_field_output
	define_field_saving
	define_field_sampling
	integrate


