Impedance Database and its Application to the APS Storage Ring

Yong-Chul Chae Accelerator Physics Group Advanced Photon Source/Argonne Nation Lab

Brookhaven National LabNSLS-II Design Group April 23, 2004

Outline of Talk

Impedance Database: construction

- •Goal/Method
- •Examples
- \bullet Total Impedance

Application: understanding observed instabilities

- •Longitudinal: Microwave
- •Horizontal: Saw-tooth
- \bullet Vertical: TMCI

Application: mitigation of instabilities

- •Impedance reduction: redesign ID chamber transition
- \bullet Transverse: longitudinal injection, negative α lattice
- \bullet Longitudinal: rf-voltage modulation

RF Cavity

RF Cavity: Wakefield

2-D ABCI simulation

RF Cavity: Wakepotential

RF Cavity: Impedance

Broadband: short range including beam loading

Narrowband: long range including beam loading

RF Cavity: Interference

Interference between cavities

4 x single cavity vs. 4-cavities in a row \rightarrow Interference small

4-cavities in a row vs. ..+ transition \rightarrow Interference large

Wakepotential/Impedance

• wakefield, long-range wake, short-range wake, broadband impedance, narrowband impedance, interference effects

•How to compile/store/manage all these concepts/data in useful form

•OLD Approach: Impedance Budget

Impedance Database

GOAL: Total Wake Potential

$$
W_{\text{total}} = \sum_{\text{Element}} N_i * W_i * \alpha_i,
$$

 W_{total} = total wake-potential of the ring,

 N_i = number of the element in the ring,

 W_i = wake-potential of the element,

 α_i = weight of the element.

1. Data in SDDS forms: s, Wx, Wy, Wz

Method:

Standard Wake Potential

- $2¹$ Uniform Simulation Condition
	- •Rms bunch length = 5mm
	- •Mesh size smaller than 0.5 mm
	- •Wake length larger than 0.3 m
- 3. Deposit the authorized wake potentials in the designated directory
	- \rightarrow Available to everyone who has access

Vertical Scraper

VERTICAL SCRAPER IS HOT!!!

THE LOSS FACTOR IS 1.2 V/pC

The current 100 mA in 25 bunch will deposit 20 W into the small cavity area.

Flag Chamber

FLAG CHA MBER WAS SURPRISE IN THE APS STORAGE RING.

BPM: Regular Chamber

BPMs are a major source of horizontal impedance in the ring!

 $Fr = 8Ghz$, $BW = 1Ghz$, $Q = 4$

P0-BPM: 5mm, 8mm, 8mmR

P0-BPMs are a major source of horizontal impedance in the ring!

Fr=22Ghz, BW=2Ghz, Q=5

Radiation Absorber

ID Chamber 3-D MAFIA vs. 2-D ABCI

Geometry: Circular transition Simulation: MAFIA 3-D, ABCI 2-D Good agreements \rightarrow Confidence in 3-D MAFIA simulation

ID Chamber: Horizontal

- 1.E-Wake is POSITIVE (DEFOCUSING)
- 2.H-Wake is NEGATIVE (FOCUSING)
- 3.Cancels Each Other \rightarrow Negligible!

Transverse Focusing Wake

CONJECTURE

- **1.The negative wake potential is a completely 3-D phenomena,**
- **2. It can occur when the degree of perturbation in one dimension is greater than in the other,**
- **3.The negative wake potential is in the plane of the smaller perturbation.**

ID Chamber: Vertical

Geometry Impedance $\propto 1/b^{**}3$

Total Impedance

Impedance Budget

Longitudinal MW: Measurement

(Y.Chae, L.Emery, A.Lumpkin, J.S ong, P

(Courtesy of K.Harkay, B.Yang)

Offset Frequency (Hz) Beam Spectrum

(Y.Chae, L.Emery, A.Lumpkin, J.S ong, P AC'01)

Longitudinal MW: Simulation

Longitudinal MW: Simulation

Bunch Length/Energy Spread Bunch Length Oscillation

Longitudinal MW: Discussion

- 1. Good agreement was obtained by impedance 80 % larger than the calculated total impedance
- 2. Bunch length oscillation could be verified by streak camera measurement
- 3. Sometimes we are getting this from the simulation:

Horizontal Saw-Tooth: Measurement

(Courtesy of K. Harkay, PAC'01)

Horizontal Saw-Tooth: Simulation

narrowband impedance

Bursting mode excited by the broadband impedance

Measurement of Driving Beam Response

(C.Yao, Y.Chae, B.Yang, A.Lumpkin)

Horizontal Saw-Tooth: Discussion

1. Need to verify the source of excitation

- Resistive wall
- HOM of rf cavities
- •Broadband impedance
- **2. Understanding driving-beam-experiment is important**
	- •Controllable source
	- Nonlinear effect
	- •Damping effect

Vertical TMCI: Simulation

7.5 nm lattice; chromaticity: ξ**x=4,** ξ**y=4**

watch-point parameters--input: 0.1 ma.ele lattice: 0.1 ma.lte

- **1.Well known decoherence behavior at low current**
- **2.Mode coupling completes 3 mA**
- **3.Beam size blow-up above mode coupling** \rightarrow **Beam Loss due to 5-mm Insertion Device Chamber**

Machine Studies

Transient Beam Profile Measurement

Purpose: Current Dependent Beam Size Blow-up

Kicker Calibration(rough)

Lattice Functions at Source Point

- \bullet • Kicker is calibrated based on the beam centeroid measured by BM gated camera
- \bullet \bullet IK1=1kV \rightarrow 0.6 mm at BM and ~2 mm at ID center in x
- \bullet \cdot IK5=1kV \rightarrow 130 µm at BM and ~50 µm at ID in y
- \bullet Precise calibration based on MIA method is under way (C.Wang, Y.Chae)

Turn-by-Turn Images

Gated Camera Images: I=1 mA, IK1=1 kV

- Gated Camera and Kicker are synchronized
- Kick the beam; Capture single image; Wait for damping; Repeat

40th Turn Image: Peak Beam Size

*pixel resolution: x/y= 36/28 um

Turn-by-Turn Images

Streak-like Beam Images: I=5 mA, IK1=1 kV

Horizontal Profile

Vertical Profile

MEDM Screen

Profile data from VID4: 30-40 data points at each turn

2.5 nm Lattice and Initial Condition

* 2.5nm lattice; chromaticity: ξx=6, ξy=6

Vertical Beam Size: Low Current (1 mA)

- •Measurement: BM Visible, IK5=1 kV, 030716
- •Simulation: ID, BBR-1, Δy=50 μm
- •Beam size normalized by the maximum for comparison

Vertical Beam Size: High Current (5 mA)

- •Measurement: BM Visible, IK5=1 kV, 030716
- •Simulation: ID, BBR-1, Δy=50 μm
- •Beam size normalized by the maximum for comparison

Vertical Beam Size: High Current (5 mA)

- •Measurement: ID x-ray pinhole, IK5=1 kV, 030929
- •Simulation: ID, BBR-1, Δy=50 μm
- •Beam size normalized by the maximum for comparison

ID x-ray source provides better agreements with simulation!

Horizontal Beam Size: Low Current (1 mA)

- •Measurement: BM Visible, IK1=1 kV, 030716
- •Simulation: ID, BBR-1, ∆x=2 mm
- •Beam size normalized by the maximum for comparison

Horizontal Beam Size: High Current (5 mA)

- •Measurement: ID x-ray pinhole, IK1=0.5 kV, 030929
- •Simulation: ID, BBR-2, ∆x=1 mm
- •Beam size normalized by the maximum for comparison

- •BBR parameter adjusted \rightarrow BBR-2 is 50% smaller than BBR-1[•] Much better agreement!
- \bullet BBR-1 and BBR-2 parameters published in PAC'03

Vertical TMCI: Discussion

– **Current Situation**

- •• 24 x 8-mm and 2 x 5-mm chambers installed in the ring
- • $\mathrm{Zy}=1~\mathrm{MW}$
- •Mode coupling at 3 mA and stability limit at 5 mA

– **Worst Situation**

- •34 x 5-mm chambers installed in the ring
- •Z y = 3.5 MW
- •Mode coupling at \sim 1 mA and stability limit at \sim 1.5 mA

–**Reduce the Impedance**

- \bullet $8 \text{ cm } x 4 \text{ cm } \rightarrow 2 \text{ cm } x 5 \text{ mm (present)}$
- \bullet $2 \text{ cm } x 1 \text{ cm } \rightarrow 2 \text{ cm } x 5 \text{ mm } (1/3 \text{ of the present } Zy)$
- \bullet Optimize the taper

Feedback damper (?)

Simulation of Injection Process

$\overline{+}$ Accumulation Limit is 8 mA

► Radiation Damage to Insertion Devices

Run 2003-1 ID Dose (alanine)

APS27#2 Damage Sequence

From Liz Moog (APS/XF D)

U27#12 Damage Sequence

Damage Distribution in Magnet Block

Damage Assessment

Simulation of Injection Process

- Injection by matched kicker bumps a ka
- Injection by mismatched kicker bumps **Septim**
	- (current injection scheme)
- Longitudinal injection ÷

Injection by Matched Kickers

From Louis Eme ry (APS/AOD)

Simulation of Matched Kicker Injection

- •Particle lost by dynamic aperture \rightarrow single particle effect
- •Injection efficiency less than $50\% \rightarrow$ constant up to 8 mA

Current Injection Scheme

From Louis Eme ry (APS/AOD)

Initial Condition of Beam Simulating Current Injection Scheme

Coordinates of Initial Beam at the center of ID straight

Coordinates of the lost particles

Particle Loss: Physical Aperture

Coordinates of the lost particles

Measured Accumulation Limit < 8 mA

Initial Coordinates of Lost Beam: High Stored Current

- **Significant amount of stored beam is lost during the injection process**
- Ξ ■ Reduce the Beam Loss → Reduce the Separation → **Longitudinal Injection**

Longitudinal Injection Scheme

Injection by Matched Kickers

Simulation of Longitudinal Injection Scheme

Injection Efficiency vs. Current

Injection Efficiency Improved in simulation !

CONCLUSION

- We completed the initial construction of Impedance Database for the APS storage ring.
- We reproduced quantitatively/qualitatively the instabilities observed in the APS storage ring by *elegant* simulations which include the impedance elements in the multi-particle tracking .
- We showed by simulation that the longitudinal injection scheme could reduce the injection loss; we hope it could reduce the radiation damage to undulators.
- The effects of small gap chamber is still under investigation
	- ¾Current dependent
	- ¾Lattice dependent

Acknowledgement

Thanks to many people

- •R. Soliday, L. Emery, M. Borland from Operational Analysis Group (Linux cluster & software)
- K. Harkay, V. Sajaev, C. Wang from Accel Phy Group
- •S. Milton, E. Trakhtenberg from XFD
- •S. Sharma, L. Morrison from Mech Eng Group
- •P. Choi, E. Rossi from Design/Draft Group
- •X. Sun, G. Decker, O. Singh, A. Lumpkin, B. Yang, L. Erwin from Diag Group
- •C. Yao from Operations Group