

Effects of Impedance in Short Pulse Generation Using Crab Cavities

Yong-chul Chae, Katherine Harkay
Advanced Photon Source

ICFA mini-workshop on Frontiers of Short Bunches in Storage Rings (SBSR05)

Frascati National Laboratory
November 7-8, 2005

Argonne National Laboratory is managed by The University of Chicago for the U.S. Department of Energy

Outline

- Motivation & approach
- Single bunch effects
- Multibunch effects
- Discussion
- Summary

Motivation

- Will impedance will spoil the results (~1 ps x-ray pulses)?
 - Vacuum chamber impedance
 - Deflecting cavity impedance
- Minimize impact of deflecting cavities on APS performance; i.e. deliver stable, low-emittance, high photon brightness outside deflecting cavity insertion

Approach

- Preliminary tracking using vacuum chamber impedance
- Specify de-Qing requirements for LOM/HOMs (Y.-C. Chae) for cavity design (G. Waldschmidt)
- Revisit tracking with vacuum chamber impedance including deflecting cavities

APS Operating Modes (100 mA nominal)

Standard

■ 24 bunches (h=1296), 4.25 mA/bunch, 150 ns bunch spacing (54 λ_{rf}), top-up

Special operating mode 1

■ 324 bunches, 0.3 mA/bunch, 11 ns bunch spacing (4 λ_{rf}), non top-up

Special operating mode 2

Hybrid mode: 16 mA single bunch ±1.6 μs gaps; 84 mA in closely spaced bunch trains (56 bunches); top-up

Hybrid mode favored for time-resolved science. Preliminary impedance study used 5 mA (below microwave instability threshold).

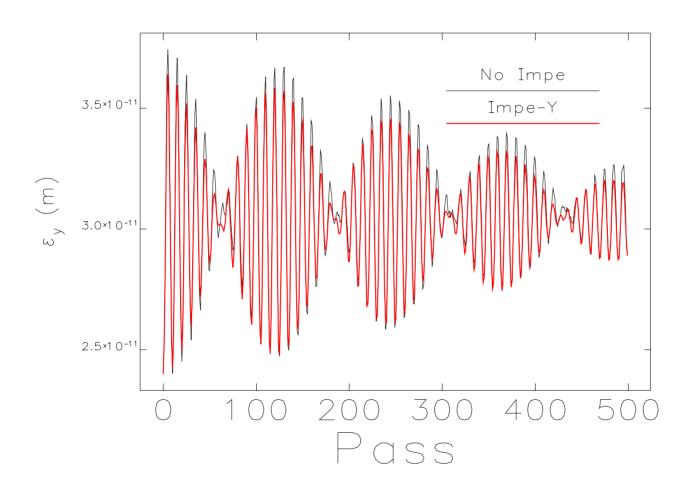
APS Impedance

Single bunch (tracking)

- Broadband impedance from Impedance Database [Y.-C. Chae et al., Proc 2003 PAC, 3008, 3011, 3014, 3017]
- Vertical impedance dominated by undulator vacuum chamber transitions (~85% of total 1.2 M Ω /m)
- Total Z_v (BBR): $R_s = 0.5 \text{ M}\Omega/\text{m}$, Q=0.4, $f_{res} = 20 \text{ GHz}$
 - Validation: reproduces measured vertical tune slope $\Delta v_y/\Delta I$ and TMCI threshold
- Longitudinal impedance dominated by rf cavities
- Total Z_z (BBR): $R_s/n = 0.4 \Omega$, Q=2, $f_{res} = 25$ GHz
 - Validation: reproduces microwave instability threshold of 7 mA, and PWD bunch lengthening to within 75%

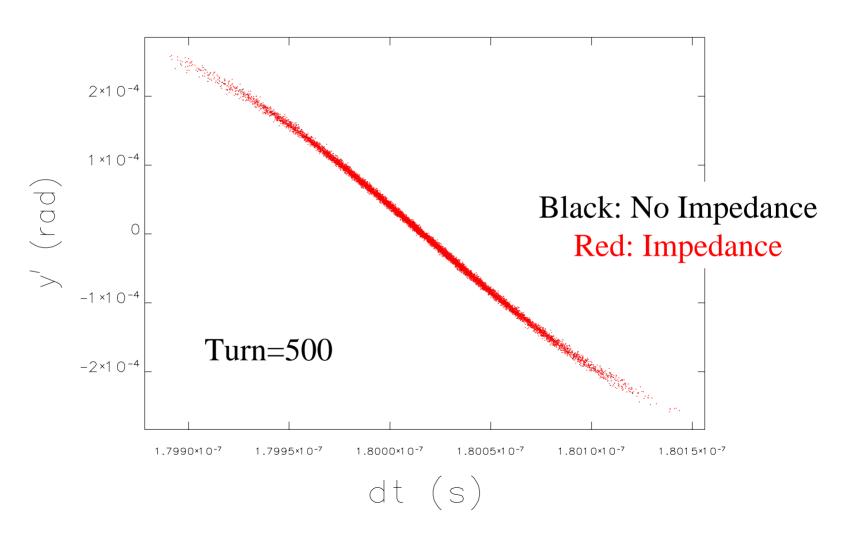
Multibunch (analytical)

CBI thresholds calculated to estimate de-Qing requirements



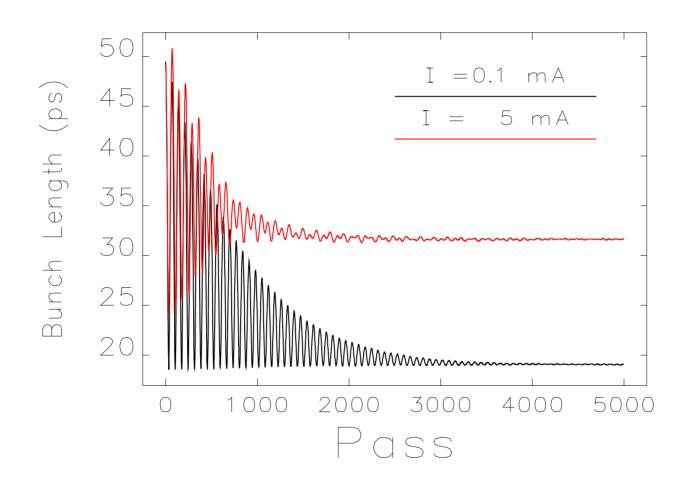
Chae's Simulation Condition (1): Vertical Only

- Use M. Borland's early lattice file (pre 2005 PRST-AB paper)
- Two deflecting cavities, 2-sector insertion
 - Frequency = 4*352 MHz
 - Voltage = 2 MV
- MB's Trick: Reduce total rf accelerating voltage to 2 MV to obtain 40 ps bunch length for 5 mA without including synchrotron radiation and Z-impedance effects
- Impedance Elements
 - BBR impedance in the Y-plane
 - 40-BBR elements at 40 sectors, each with strength Total Z_{\downarrow} /40
 - No impedance in Z plane
 - No synchrotron radiation effects
 - 10k macroparticles tracked for 500 turns



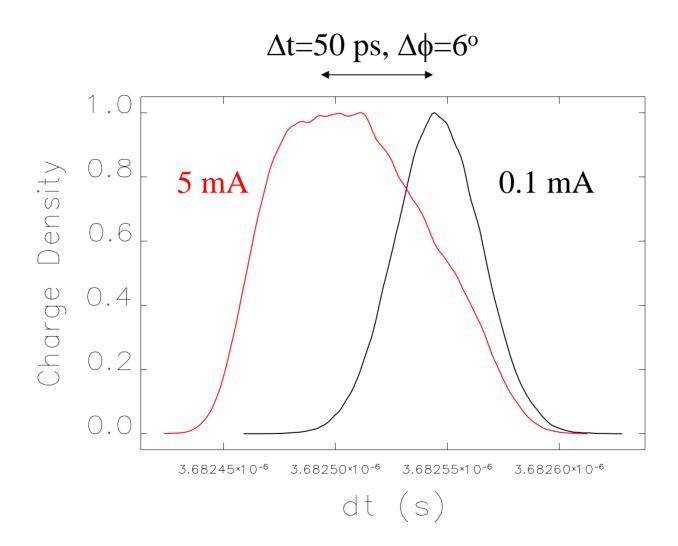
Comparison: Y Impedance vs. No Impedance

Comparison: Y Impedance vs. No Impedance

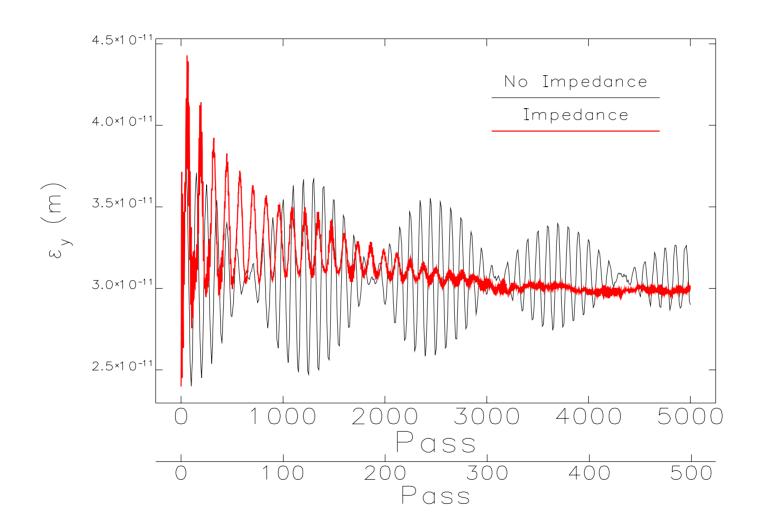


Chae's Simulation Condition (2): Longitudinal + Vertical

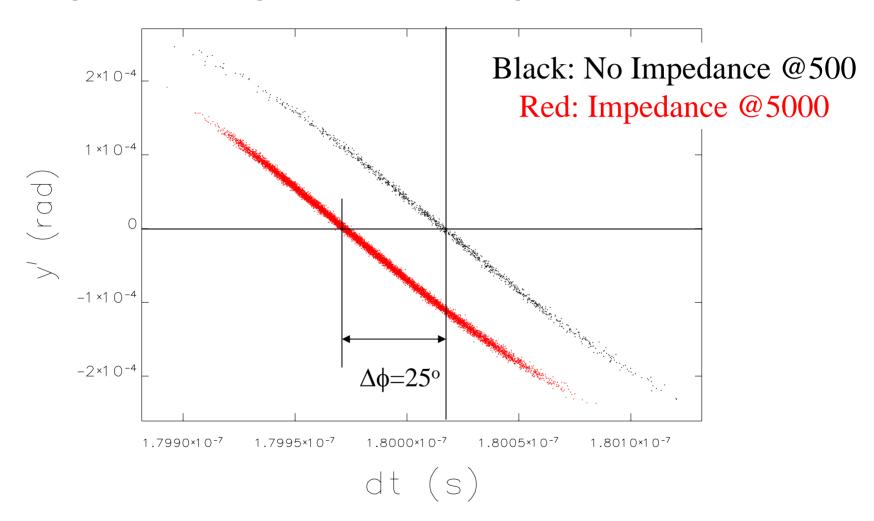
- Use M. Borland's early lattice file (pre 2005 PRST-AB paper)
- Two deflecting cavities, 2-sector insertion
- Impedance Elements
 - BBR impedance in the Y-plane
 - 40-BBR elements at 40 sectors, each with strength Total $Z_v/40$
 - 10k macroparticles
 - Numerical impedance in the Z-plane (rather than BBR model)
 - Z-impedance element in one location
 - Synchrotron radiation effects included
 - Total rf-gap voltage = 9.4 MV
 - Number of turns increased from 500 to 5000



Z-Impedance: Bunch Lengthening



Z-Impedance: Bunch Profile



Comparison: Z Impedance vs. No Impedance

Comparison: Z Impedance vs. No Impedance

Multibunch instab. thresholds from parasitic mode excitation (per Y-C. Chae)

APS parameters assumed: I = 100 mA, E = 7 GeV, α =2.8e-4, ω_s /2 π =2 kHz, ν_s =0.0073, β_x = 20 m

	Longitudinal	Transverse	
Growth Rate, $\tau_g^{-1} (s^{-1})^{[1]}$	$\tau_g^{-1} = \frac{\alpha I_{tot}}{4\pi (E/e)v_s} \sum_p \omega_p \operatorname{Re} Z_z(\omega_p)$	$\tau_g^{-1} = \frac{\omega_0 I_{tot}}{4\pi (E/e)} \beta_{\perp} \sum_p \operatorname{Re} Z_t(\omega_p)$	
	$<\frac{\alpha I_{tot}}{2(E/e)v_s}(R_s \times f_p)$	$< rac{\omega_0 I_{tot}}{4\pi (E/e)} eta_{\perp} R_t$	
Impedance ^[2] (Ω ; Ω /m)	$Z_z(\omega) = \frac{R_s}{1 + jQ(\omega/\omega_r - \omega_r/\omega)}$	$Z_{t}(\omega) = \left(\frac{\omega_{r}}{\omega}\right) \frac{R_{t}}{1 + jQ(\omega/\omega_{r} - \omega_{r}/\omega)}$	
Damping Rate, τ _d -1 (s-1)	212 106		
Shunt Impedance ^[2]	$R_s = V^2/2P$	$R_t = (c/\omega_r)R_s/b^2$	
Stability Condition: $\tau_g > \tau_d$	$R_s \times f_p < 0.8 M\Omega - GHz$	$R_t < 2.5 M\Omega/m$	

[1] A. Mosnier, Proc 1999 PAC.

[2] L. Palumbo, V.G. Vaccaro, M. Zobov, LNF-94/041 (P) (1994; also CERN 95-06, 331 (1995).

Preliminary mode list for single-cell SC cavity (G. Waldschmidt)

Monopole				
Frequency (GHz)	Q (unloaded)	Rs (M Ω)	Rs/Q	De-Q factor
2.28	4.95e9	2.69e5	54.5	7.7e5
3.78	4.47e9	2.65e4	5.9	1.2e5
4.66	2.15e9	1.75e4	8.1	1e5
Dipole				
Frequency (GHz)	Q (unloaded)	Rt (MΩ/m)	Rt/Q	De-Q factor
2.82	4.92e9	2.49e5	50.6	Crabbing mode
3.73	3.00e9	6.00e4	19.9	2.4e4
4.25	3.30e9	1.43e-3	4.3e-7	-
4.43	3.10e9	6.50e3	2.1	2.6e3

Preliminary estimate of BBR contribution

$$\left(\frac{Z}{n}\right)_{cav}^{BB} = \sum_{j} \frac{R_s^j \omega_0}{Q^j \omega_{res}^j} = 0.0074 \,\Omega$$

 $\omega_0 = 2\pi$ (271.55 kHz) = revolution frequency

6 MV per sector, 7 single-cell cavities each

$$Z/n$$
 (BB) = 0.1 Ω

Compare with 0.4 Ω total longitudinal BBR

Discussion

Chamber impedance not expected to be a show-stopper

- Main effect is shift of bunch centroid (rf phase)
- Implement transverse feedback to control y-centroid

Increase the level of sophistication in simulations

- Include HOM of deflecting cavities
- Compare BBR-Model vs. Numerical-Impedance elements
- Request modifications of elegant if necessary

Simulation with impedance is expensive

- Single-part. tracking: Np=1k, Nturn=500 → 1 hr
- Impedance: Np=10k, Nturn=5000 (2-damping times) → 120 hr!
- Wait for parallelization of elegant to be completed
- Refine SC rf cavity design, use final rf & lattice used for singleparticle tracking, then include the impedance as final check