Recent and Planned Improvements to APS Storage Ring Operation

Michael Borland
Operations Analysis Group
Accelerator Operations Division
Outline

- Top-up operation
- Low-emittance configuration
- Beam stability
- Canted IDs
- Longer straight sections
Top-Up Operation

- Top-up refers to adding current to the ring at 2 minute intervals.

- In FY2002, we will top-up 75% of the time.
Top-Up Benefits

- X-ray beam stability improved due to constant heat-load on optics
 - less set-up and tune-up time
 - more demanding experiments made possible
 - easier to diagnose beamline problems
- Time-averaged flux is 15% to 100% higher
 - reduces time needed for experiments
 - increases the number of experiments per day
Top-Up Benefits

- Flexible, enhanced operation, combining
 - higher x-ray brightness
 - small gap devices
 - timing experiments
Low-Emittance Configuration

- Low-emittance configuration provides higher beam brightness

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Brightness</th>
<th>Lifetime (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>present</td>
<td>$9 \cdot 10^{18}$</td>
<td>22</td>
</tr>
<tr>
<td>low emittance</td>
<td>$2 \cdot 10^{19}$</td>
<td>7.4</td>
</tr>
</tbody>
</table>

- The shorter lifetime, inherent in low-emittance configuration, is not a problem with top-up.

- Top-up increases the time-averaged flux of low-emittance configuration by 100%.
Spot Sizes for Present and Low-Emittance Configurations
Low-Emittance Options

• We can push the low-emittance configuration further, but lifetime will suffer.

• Top-up can probably support another 2-fold brightness increase.

• Another 4-fold increase is possible but presently not considered as it requires
 • more bunches, or
 • more frequent top-up

• Further research may provide another way to realize some of this brightness increase.
Higher Beam Current Study

- Accelerator was operated at 200 mA for a few hours

- Observations
 - More studies needed to assess accelerator performance
 - Requires more bunches for acceptable lifetime
 - Current front-ends can handle up to 150 mA
Beam Stability

• APS is working toward submicron source position stability.

• Recent accomplishments
 • “Gang of 6” bunches eliminated
 • Improved vertical orbit feedback
 • Feedforward on switched wiggler
Feedback and Feedforward

Feedback is reactive

- perturbation
- orbit error
- detection
- computation
- correction
- reduced orbit error

Feedforward is proactive

- perturbation
- computation
- correction
- reduced orbit error
Methods of Improving Beam Stability

- Use feedback only when feedforward isn’t possible

- For feedback systems
 - Improve quality and speed of orbit measurement
 - Improve rate at which corrections are applied
 - Improve accuracy of corrections

- For feedforward systems
 - Precalculate/measure correction with high accuracy
 - Improve rate at which corrections are applied
Beam Stability Progress

Vertical orbit correction now uses bending magnet (BM) x-ray BPMs and “narrow-band” rf BPMs.

![Graph showing beam position improvement before and after implementation](image-url)
Beam Stability Progress
Feedforward Compensation of Switched Wiggler

Without feedforward

Feedback Effort
EMW Current

With feedforward

Feedback Effort
EMW Current

<table>
<thead>
<tr>
<th>Time</th>
<th>Feedback Effort (A)</th>
<th>EMW Current (kA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.06</td>
<td>0.6</td>
</tr>
<tr>
<td>100</td>
<td>0.02</td>
<td>0.4</td>
</tr>
<tr>
<td>200</td>
<td>-0.04</td>
<td>0.2</td>
</tr>
<tr>
<td>300</td>
<td>-0.06</td>
<td>0.0</td>
</tr>
<tr>
<td>400</td>
<td>0.02</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Feedforward Effort
EMW Current
Beam Stability Work in Progress

- Work driven by 2001 APS User Survey: seconds-to-days time scale is most important.
- Hence, improving the DC orbit feedback
 - higher data rate: ~100 Hz instead of 0.4 Hz
 - higher correction rate: 10 Hz instead of 0.4 Hz
 - DSP-conditioned signals for lower noise
 - will allow accurately characterizing IDs for feedforward
- Also, integrating ID x-ray BPMs into feedback
 - less long-term drift
 - greater fill-to-fill reproducibility
“Decker” Displacement

This is a method for reducing “pollution” of the ID x-ray BPM signals and making them useful.
Decker Displacement

- ID x-ray BPMs are important as they have a long “lever arm” that permits better control.
- Up to 10-fold reduction in pollution of ID BPM signals.
- Displacement has been performed in 10 sectors and is planned for 9 more.
- We are also pursuing
 - improved electronics
 - characterization of gap dependence
Multiple Sources in a Straight Section

- Planning to place two canted IDs in a straight section

- Similar beamline already in operation with 270μr angle.

- This would allow two nearly-independent hard x-ray beamlines in one straight section.

- Other beamlines of this type are planned
Longer Straights

Option for longer straight sections was part of APS design:

- Photon-limited application? Use longer ID for more flux.
- Time-limited application? Use several IDs for more stations.
Summary

- Top-up mode yields many benefits
- Low-emittance configuration increased brightness significantly
- Beam stabilization effort
 - starting to show impact
 - significant progress expected in FY2002
- APS is a very flexible machine and provides many options
 - Canted IDs
 - Longer straight sections
 - Higher brightness