PAR Kicker Upgrade and PAR Retirement Considerations

Nick Sereno
PAR Manager, Booster Manager, Linac Deputy Manager

Michael Borland
Operations Analysis Group / AOD

Argonne National Laboratory
A U.S. Department of Energy
Office of Science Laboratory
Operated by The University of Chicago
Outline

• APS injector requirements.
• APS injector configuration and operation.
• PAR kicker upgrade advantages and drawbacks.
• PAR retirement options and issues.
• Conclusion.
APS Injector Requirements

- Top-up and timing mode are the most demanding requirements for the injector
- Top-up requires
 - Single-pulse injection every 2 minutes.
 - 2-3.5 nC/shot
 - Charge requirement will increase if we push the emittance down.
- Timing (singlets) mode requires good bunch purity: 1 part in 100,000 or better.
Injector Configuration and Operation for Storage Ring Operations

PAR Parameters -
- Injection Rate: <30 Hz
- Injection Pulses: 1-5
- Extraction Rate: 2 Hz
- Extracted Charge: 0.3-5 nC
- Operating Energy: 325 MeV

Booster Parameters -
- Injection Rate: 2 Hz
- Extraction Rate: 2 Hz
- Charge: 0.3 - 5 nC/pulse
- Injection Energy: 325 MeV
- Extraction Energy: 7 GeV

LINAC Parameters -
- Beam Rate: 2 - 10 Hz
- Charge: 0.3 - 1 nC/pulse
- Extraction Energy: 325 MeV
- Linac macropulse length 11-16 ns
 RG2 (30 ns RG1)
PAR Primary Functions

- **Accumulate charge from the linac**
 - Reduces need for high charge gun (5x reduction)
 - Can routinely provide 5nC/pulse
 - Can probably reach operating envelope of 10nC/pulse

- **Compress bunch from 10-30 ns to 2.8 ns to provide “pure” injection into booster**
 - Reduces need for short-pulse gun (10x reduction)
PAR Issues

- Reliability, maintenance, and time-to-repair for
 - kicker magnets (>50% of PAR downtime)
 - rf systems (anecdotally the next biggest contributor)
- We can address this by
 - Improving troublesome components
 - Finding a way to eliminate the PAR altogether
- We’ll look at benefits of kicker upgrade
- We’ll also look at difficulties of retiring the PAR
 - Need to deliver a single pure bunch of up to 10 nC.
 - Do it every two minutes for 6 weeks.
PAR Kicker Upgrade Benefits

• Primary benefit is reduced downtime for 325 MeV operation.
• Present design has 1~2 failures per year
 • Redesign will reduce this rate
• Presently, a kicker failure takes as much as 13 hours to repair
 • Top-up not possible during this time
 • Refills possible if beam lost, but
 • Bunch purity is beyond horrible
 • Takes about 30 minutes to remove locks, close tunnel, bring up linac, and fill
 • About 1 hour required to shut down and resume repairs
• Present design requires significant maintenance at each shut down
 - New kicker system would be easier to maintain.
PAR Kicker Upgrade Benefits

- New design will operate at higher voltage than present design
- Will allow the PAR to operate at design energy (450 MeV).
 - Improved booster reliability: more consistent injection due to injection into booster when magnet currents are higher.
 - Improved PAR reliability: lower fractional energy spread from the linac will give higher, more stable capture efficiency in the PAR (particularly for RG1).
 - May allow top-up/LEUTL interleaving at nearly the highest linac energy (~500 MeV).
- Optionally, we might be able to eliminate the EK kicker altogether.
Interleaving Injector Configuration With PC Gun and PAR for top-up

PAR Parameters -
- Injection Rate: 6 Hz
- Extraction Rate: 2 Hz
- Injection Pulses: 1-3
- Extracted Charge: 0.3 – 3 nC/cycle
- Injection Energy: 325 – 450 MeV

LINAC Parameters -
- Pulse Rate: 6 Hz
- Injection Pulses: 1-3
- Extracted Charge: 0.3 – 1 nC
- Extraction Energy: 325 - 450 MeV

Booster Parameters –
- Injection Rate: 2 Hz
- Extraction Rate: 2 Hz
- Charge: 0.3 - 3 nC/cycle
- Extraction Energy: 7 GeV

To Storage Ring

To LEUTL

PCG

L1
L2
L4
L5
RG2
RG1

PAR

Booster
Impact of PAR Operation Above 325 MeV

- **PAR fundamental and harmonic RF systems must not have reduced reliability.**
 - Design is 40 kV for fundamental and 30 kV harmonic gap voltage at 450 MeV.
 - Presently operate the fundamental at 31 kV and the harmonic at 27 kV for 325 MeV.

- **Somewhere between 325 MeV and 400 MeV the linac loses “redundancy” (ability to fill the PAR without L4 or L5).**
 - Presently, operators simply drive the working system harder to get 325 MeV (~5 minutes).
 - Above the redundancy energy, PAR and linac need to be standardized down to 325 MeV (~10 minutes).

- **The interleaving benefit may require additional pulsed quadrupoles in LTP to match the transverse optics of the PC gun beam into the PAR.**
Injector Configuration for Direct Injection

Booster Parameters –
- Injection Rate: 2 Hz
- Extraction Rate: 2 Hz
- Charge: 0.3 – 2.2 nC/cycle
- Extraction Energy: 7 GeV

LINAC Parameters -
- Injection Rate: 2 Hz
- Extracted Charge: 0.3 – 2.2 nC/cycle
- Extraction Energy: 325-450 MeV
- RG2 Macropulse Length – 11-16 ns
- RG1 Macropulse Length – 30 ns
“Impure” Direct Injection – Storage Ring Bucket Pattern
“Pure” Direct Injection Options

- **Bunch cleaning in the booster (transverse knock-out)**
 - By itself, this throws away too much charge to be practical
 - Booster power supply regulation is a problem
 - *Injection at 400-450 MeV helps*
 - May be useful in combination with another scheme

- **Use a subharmonic capture cavity in the booster**
 - Not straight-forward due to low rf-frequency (~30 MHz) and high voltage (~650 kV)
 - Can be made easier by
 - *Shortening the gun pulse*
 - *Combining with bunch cleaning*
Pure Direct Injection Options

- **Replace the rf gun kickers with faster kickers**
 - Recent attempt to speed up existing kickers didn’t succeed
 - SSRL rf guns use a swept kicker that delivers a ~2ns pulse
 - *Could explore this with a ~5ns design*
 - *Requires running the gun very hard (~10-20x present level)*
 - *Cathode lifetime would be shortened*

- **Use a short-pulse DC gun**
 - Can provide high charge
 - Difficult to do reliably (Nassiri)
 - Can still have multiple guns using alpha magnets (SLAC does)
 - Requires changes to the front end that might require removal of the PC gun
Pure Direct Injection Options

- Use a laser-driven rf gun that delivers high charge in a short pulse
 - LEUTL’s PC gun is not suitable in spite of 5-ps pulse length
 - There is still no solution to the booster-to-laser timing issue
 - The system is not reliable or robust enough for operations
 - Not clear that it can deliver 5~10 nC/pulse without damaging cathode
 - Use of a “long-pulse” (~5 ns) drive laser is an option
 - Duke University does this for their injector
 - The bunch purity may not be adequate (O’Shea)
 - Combine with bunch cleaning or subharmonic capture
Pure Direction Injection

- Our best non-PAR option seems to be
 - Long-pulse-laser-driven gun delivering
 - $\leq 5\text{ns}$ pulse length
 - Up to 10 nC per pulse
 - If needed, provide high bunch purity with
 - Bunch cleaning and 450 MeV injection, and/or
 - 117 MHz rf system in booster

- We need considerable R&D to ensure that this will work
- We need to have some assurance that the new system will be more reliable than the old one!
Issues with Long-Pulse-Laser-Driven Gun

- **Main issue: does it work reliably?**
 - A laser-drive system with 5-ns macropulse implies 2-Amp pulse off the cathode.
 - We now run at 100-200 mA in a 2-us pulse.
 - *The guns as presently run are very reliable*
 - *Cathodes last for years*
 - Does cathode get damaged/degraded over time?
 - What is laser lifetime and reliability?
 - High peak current will impact
 - *Emittance*
 - *Bunch compression and energy spread*
 - *Wakefields*
 - *Transport efficiency*
Thorough Testing Required

- We’ll require significant time both for experiments and simulated long-term running.
- Use ITS to investigate as many issues as possible using a standard APS rf gun.
 - Standard guns are easy to operate and familiar to operators
 - With standard gun, can do rapid laser vs. thermionic comparisons that are directly relevant to operations
 - We know what to expect from a standard gun in terms of
 - Beam quality
 - Cathode damage (none)
 - Reliability (very high)
- After ITS testing, try on installed RG1 or RG2 gun.
 - Use for a full run as the primary gun
 - Unmodified gun used as backup
Pure Direct Injection Will Require Time to Implement

- Gun testing: ~6-12 months.
 - Install standard gun
 - Benchmark diagnostics and measurement techniques
 - Characterize beams (thermionic- and laser-derived)
 - Determine operating parameters
 - Long-term test (1 month of simulated top-up)
 - Inspection of cathode surface
 - Operational test using RG1 or RG2 (1 run)
 - *Inject directly into booster and measure SR bunch purity*

- Following gun testing, decide if subharmonic system and/or bunch cleaning is needed.
 - If so, develop and deliver operations-ready system.
 - *Guesstimate about a year needed for this*
Conclusion

• APS requires high-charge, high-purity injector to support user operations, particularly top-up.
• Existing rf guns + PAR meet requirements.
• PAR kicker upgrade would
 - Improve operational reliability.
 - Make the system easier to maintain.
 - Possibly allow higher energy, more reliable injection.
• “Impure” direct injection has been demonstrated using RG2 and can be used to fill the SR in the event the PAR is down.
• Significant effort required to realize “pure” direct injection and retire the PAR.
 - Long-pulse-laser-driven rf gun.
 - Construction of bunch cleaning or subharmonic capture system.
• PAR retirement is probably at least 2 years away.