

... for a brighter future

ERL Staging: A Gradual Approach to an ERL Upgrade of the APS

Katherine Harkay Yong-Chul Chae

U.S. Department of Energy

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC ERL09, Cornell U.

June 8-12, 2009

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Ultimate APS ERL Upgrade Concept¹

- Single-pass 7 GeV linac points away from APS to permit straight-ahead hard x-ray short-pulse facility^{2,3}
- Beam goes first into new, emittancepreserving turn-around/user arc⁴
 - Second-stage upgrade would add many new beamlines
- ERL can benefit from very long undulators⁵
 - Higher flux and brightness
 - Could add these using somewhat different geometry
- Ability to store beam unchanged¹
- Existing injector complex unchanged.
- ¹G. Decker, private communication (2006).
- ²M. Borland, "ERL Upgrade Options and Possible Performance," 9/18/06.
- ³M. Borland, "Can APS Compete with the Next Generation?", May 2002.
- ⁴M. Borland, private communication (2006).

⁵S. Gruner et al., "Synchrotron Radiation Sources for the Future," 11/30/200. ^{2,3,4} **M. Borland et al., NIM A 582, 54 (2007).**

ERL Upgrade in Stages

- Each stage a stand-alone upgrade to reach the final goal. Lower-risk approach to upgrading an existing x-ray source to an ERL.
- Low-emittance linac beam delivered in stages while critical injector and superconducting radiofrequency (SRF) R&D continues in parallel.
 - Assumes 0.1 mm-mr emittance source available with very low average current
 - Valuable srf operational experience attained at early stage
 - Other critical beam issues can be tested
- Microscopy and coherent imaging users benefit immediately from improved x-ray source performance, initially modest and gradually approaching "ultimate" ERL source.
- Flux-hungry users continue to use stored-beam operation.
- As an added benefit, the staged ERL also allows an XFELO to be experimentally tested, well before construction of an ultimate ERL or XFELO facility*.

* K.-J. Kim, Y. Shvyd'ko, S. Reiche, Phys. Rev. Lett. 100, 244802 (2008). M. Borland, Proc. 2009 PAC, TU5RFP048.

- SRF linac points towards APS ring, 7-GeV full energy (or recirculating) – one turn thru APS
 - Assumes 20 MV/m¹
 - Cost ~40% of ultimate ERL
- Beam parameters CEBAF-like
 - 150 μA avg. beam current (pulsed injector)
 - 1.05 MW beam power (dumped)
 - Assumes 0.1 mm-mr emittance achievable
- Energy recovery not required
- Avg. beam brightness matches APS now ("break-even")
- Geometry similar to others, but not as staging concept: D. Douglas², M. Borland³, J. Lewellen⁴
 - ¹ M. Borland et al., NIM A 582, 54 (2007).
 - ² D. Douglas, JLAB-TN-98-040m(1998).
 - ³ M. Borland, private communication (2002).
 - ⁴ J. Lewellen, APS Light Source Note LS-298 (2003).

Source Performance, Stage 1

- APS lattice reoptimized to take advantage of low-emittance beam.
- $β_x, β_y = (1, 1)$ -m solution close to optimum matching condition for min 6-D vol.; possible using the present quadrupoles.
- Emittance growth due to quantum excitation est. to be ~8 pm (one turn).
- Coherence fraction same as ultimate ERL; depends only on emittance.

Transverse Coherence Fraction Comparison

Injector

- Requirements for Stage 1:
 - 150 μ A and 0.1 mm-mr normalized emittance
 - Assuming 1-MHz rep rate injector: 150-pC bunch charge
- Promising designs and results for low bunch charge; appear within striking range for Stage 1
 - SCSS: 200-400 pC, 0.7 mm-mr, 60 Hz [Shintake, Togawa et al.]
 - LCLS: 20 pC, 0.14 mm-mr, 120 Hz [Akre et al.]
 - PSI FEL injector [Ganter et al.]
 - Cornell DC injector [Dunham et al.]
 - XFELO design: 30-40 pC, 0.1 mm-mr, 1-MHz rep rate; thermionic cathode + 100-MHz VHF gun [Ostroumov et al.]
 - LBNL FEL injector design: photocathode + VHF gun [Staples, Sannibale et al.]

Coherent Diffraction X-ray Imaging

Lensless method for imaging thick and buried structures

- Two-step process: record coherent x-ray diffraction pattern, recover object structure computationally
- Resolution limited only by wavelength and measurable signal

100 200

700

800 900 1000

- Sensitive to phase as well as absorption of specimen
- Get 3D by tomographic methods

resolution ~ λ / angular size

J. Miao, et al., Nature 400, 342 (1999)

Slide courtesy I. McNulty

Coherent Imaging Scientists' Perspective*

- ERL Stage 1 potentially interesting as a step towards XFEL sources.
 Typically work in 4-12 keV range.
- Desirable coherence fraction increase without having to throw away 90% of beam. Optics heat load issue mitigated, more stable.
- Break-even brightness okay, but 10x higher would get noticed
 - Relative brightness at 10 keV scales approx. linearly with beam power; higher than ~2 MW may require energy recovery
 - Relative brightness improves more rapidly at higher harmonics; can reach 10x higher relative brightness for 30 keV and 2.5 MW beam power (beam dump needs design)
- Beamlines would need to be optimized to take advantage of round photon beam and 100% throughput ($\sigma_{x,y}$ 2.7 μ m, $\sigma_{x',y'}$ 2.7 μ r).
- Relatively few APS users (today) could take advantage of Stage 1 special operating mode (interleaved with stored-beam operation). Stand-alone source with switchyard may be an alternate option.

ERL, Stage 2

- Energy recovery is commissioned.
- Add return arc and merger optics.
- Add new extraction line, extended parallel to the linac.
- Allows testing energy recovery with co-propagating high-energy beams (≤ 7 GeV) and modest average current (up to 1 MW beam power).
- Highest-energy demonstration of an ERL was by CEBAF at 1 GeV and ~1 µA (~1 kW); this was done for only a single-pass acceleration and deceleration.
- Highest-power FEL ERL, at JLab, operates with 1.4-MW beam power at low beam energy.

Optics

Lattices for accelerating and recovery linacs and APS ring same as ultimate ERL.

- Transport line, return arc, and matching sections modified to accommodate ERL staging concept.
- Brightness of the APS will be slightly better than ultimate ERL due to direct injection from the 7-GeV linac.

Y.-C. Chae

ERL, Stage 3 and Beyond

- Pulsed electron source can continue to be used while cw injector R&D proceeds and a prototype becomes available.
- At that point, energy recovery testing with accumulation to higher current can proceed.
- A low-energy dump can be designed for the full ERL power anticipated. Cornell gives a design for a 1-MW dump.
- In the final stage, the linac is turned around after the large turnaround arc is constructed for the ultimate ERL.

Summary

- ERL staging envisioned as a way to gradually upgrade the APS in steps, reducing overall risk.
- Energy recovery not needed in stage 1; valuable experience operating srf system and controlling the beam.
- Relatively modest injector development satisfies stage 1 source with "break-even" beam brightness and 2 orders of magnitude higher coherent fraction.
- Microscopy and coherent imaging users benefit immediately; highflux users continue to use stored beam mode.
- Energy recovery commissioning proceeds in stage 2 with construction of modest return arc.
- Accumulation with ER proceeds with cw injector.
- Large turn-around arc constructed as final step.

Thanks to M. Borland, E. Gluskin, I. McNulty, A. Nassiri, K.-J. Kim, V. Sajaev

