Zerolength Multipole RF DeFlector from dipole to decapole
Parallel capable? : yes
GPU capable? : no
Backtracking capable? : no
Parameter Name  Units  Type  Default  Description 
FACTOR  double  1  A factor by which to multiply all components. 

TILT  RAD  double  0.0  rotation about longitudinal axis 
A1  V∕m  double  0.0  Verticallydeflecting dipole 
A2  V∕m^{2}  double  0.0  Skew quadrupole 
A3  V∕m^{3}  double  0.0  Skew sextupole 
A4  V∕m^{4}  double  0.0  Skew octupole 
A5  V∕m^{5}  double  0.0  Skew decapole 
B1  V∕m  double  0.0  Horizontallydeflecting dipole 
B2  V∕m^{2}  double  0.0  Normal quadrupole 
B3  V∕m^{3}  double  0.0  Normal sextupole 
B4  V∕m^{4}  double  0.0  Normal octupole 
B5  V∕m^{5}  double  0.0  Normal decapole 
FREQUENCY1  HZ  double  2856000000  Dipole frequency 
FREQUENCY2  HZ  double  2856000000  Quadrupole frequency 
FREQUENCY3  HZ  double  2856000000  Sextupole frequency 
FREQUENCY4  HZ  double  2856000000  Octupole frequency 
FREQUENCY5  HZ  double  2856000000  Decapole frequency 
PHASE1  HZ  double  0.0  Dipole phase 
PHASE2  HZ  double  0.0  Quadrupole phase 
PHASE3  HZ  double  0.0  Sextupole phase 
PHASE4  HZ  double  0.0  Octupole phase 
PHASE5  HZ  double  0.0  Decapole phase 
PHASE_REFERENCE  long  0  phase reference number (to link with other timedependent elements) 

GROUP  string  NULL  Optionally used to assign an element to a group, with a userdefined name. Group names will appear in the parameter output file in the column ElementGroup 

This element simulates an rf deflector with specified multipole content.
Assuming for simplicity that y = 0, the momentum change in the horizontal plane is
 (95) 
where k = ω∕c and p_{x} = β_{x}γ. The deflection is
 (96) 
where the approximation results from the fact that p_{z} = β_{z}γ also changes in order to satisfy Maxwell’s equations.
MULT